ar X iv : h ep - t h / 05 10 09 2 v 2 23 J an 2 00 6 Topological entanglement entropy

نویسنده

  • John Preskill
چکیده

We formulate a universal characterization of the many-particle quantum entanglement in the ground state of a topologically ordered two-dimensional medium with a mass gap. We consider a disk in the plane, with a smooth boundary of length L, large compared to the correlation length. In the ground state, by tracing out all degrees of freedom in the exterior of the disk, we obtain a marginal density operator ρ for the degrees of freedom in the interior. The von Neumann entropy S(ρ) of this density operator, a measure of the entanglement of the interior and exterior variables, has the form S(ρ) = αL−γ+ · · ·, where the ellipsis represents terms that vanish in the limit L → ∞. The coefficient α, arising from short wavelength modes localized near the boundary, is nonuniversal and ultraviolet divergent, but −γ is a universal additive constant characterizing a global feature of the entanglement in the ground state. Using topological quantum field theory methods, we derive a formula for γ in terms of properties of the superselection sectors of the medium.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : h ep - t h / 04 05 23 1 v 1 2 6 M ay 2 00 4 A Viscosity Bound Conjecture

Exploring an extension of the correspondence between black hole physics and thermodynamics to non-equilibrium processes, we show that the ratio of shear viscosity to volume density of entropy in theories with gravity duals is equal to a universal value of ~/(4π). We conjecture that this value serves as a lower limit on the ratio of shear viscosity to entropy density for all systems realizable i...

متن کامل

ar X iv : h ep - t h / 05 09 05 6 v 1 8 S ep 2 00 5 Solitons and soliton – antisoliton pairs of a Goldstone model in 3 + 1 dimensions

We study finite energy static solutions to a global symmetry breaking model in 3 + 1 dimensions described by an isovector scalar field. The basic features of two different types of configurations are discussed, one of them corresponding to axially symmetric multisolitons with topological charge n, and the other one to unstable soliton–antisoliton pairs with zero topological charge.

متن کامل

ar X iv : h ep - t h / 05 07 22 8 v 1 2 3 Ju l 2 00 5 1 Is entanglement entropy proportional to area ?

It is known that the entanglement entropy of a scalar field, found by tracing over its degrees of freedom inside a sphere of radius R, is proportional to the area of the sphere (and not its volume). This suggests that the origin of black hole entropy, also proportional to its horizon area, may lie in the entanglement between the degrees of freedom inside and outside the horizon. We examine this...

متن کامل

ar X iv : h ep - t h / 05 09 05 6 v 2 8 Fe b 20 06 Solitons and soliton – antisoliton pairs of a Goldstone model in 3 + 1 dimensions

We study finite energy topologically stable static solutions to a global symmetry breaking model in 3 + 1 dimensions described by an isovector scalar field. The basic features of two different types of configurations are studied, corresponding to axially symmetric multisolitons with topological charge n, and unstable soliton–antisoliton pairs with zero topological charge.

متن کامل

ar X iv : h ep - t h / 05 07 22 8 v 2 2 8 M ar 2 00 6 1 Is entanglement entropy proportional to area ?

It is known that the entanglement entropy of a scalar field, found by tracing over its degrees of freedom inside a sphere of radius R, is proportional to the area of the sphere (and not its volume). This suggests that the origin of black hole entropy, also proportional to its horizon area, may lie in the entanglement between the degrees of freedom inside and outside the horizon. We examine this...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006